A representation theorem for finite Gödel algebras with operators


T. Flaminio, L. Godo, R. O. Rodriguez

978-3-662-59533-6.jpgIn this paper we introduce and study finite Gödel algebras with operators (GAOs for short) and their dual frames. Taking into account that the category of finite Gödel algebras with homomorphisms is dually equivalent to the category of finite forests with order-preserving open maps, the dual relational frames of GAOs are forest frames: finite forests endowed with two binary (crisp) relations satisfying suitable properties. Our main result is a Jónsson-Tarski like representation theorem for these structures. In particular we show that every finite Gödel algebra with operators determines a unique forest frame whose set of subforests, endowed with suitably defined algebraic and modal operators, is a GAO isomorphic to the original one.

Keywords:Finite Gödel algebras; modal operators; finite forests; representation theorem.


In: Iemhoff R., Moortgat M., de Queiroz R. (eds). Logic, Language, Information, and Computation, WoLLIC 2019. LNCS 11541: 223–235, Springer, 2019.

Author: tomflaminio

Ramón y Cajal Researcher at the Artificial Intelligence Research Institute of Barcelona

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s